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The gap between the eigenvalues of the dominant and subdominant eigenvectors of the evolution operator
associated with the contact process in one dimension is studied by perturbative series expansions in powers of
the creation rate. The series expansion for the gap was computed with 49 coefficients. An analysis by Padé
approximants allowed the determination of the critical creation rate and the time correlation critical exponent.
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I. INTRODUCTION

A major role in the theory of stochastic Markovian pro-
cesses is played by the gap between the dominant and sub-
dominant eigenvectors of the evolution operator. When the
gap is nonzero, the time correlations decay exponentially
with a characteristic length which is identified as the inverse
of the gap. If the gap vanishes as one varies an external
parameter, the dominant eigenvalue becomes degenerate and
a continuous phase transition takes place. The characteristic
length, or correlation length, then diverges at the transition
point. The calculation of the gap requires the knowledge of
both the dominant and subdominant eigenvectors of the evo-
lution operator. However, in the case of a contact process
�1–11�, which concerns us here, this task is simplified be-
cause the dominant eigenvector is trivial. It is simply the
state devoid of particles. The problem is thus reduced to the
calculation of the subdominant eigenvector.

Our main purpose here is a study of the gap of the evo-
lution operator associated with the contact process in an in-
finite lattice in the subcritical regime by means of a pertur-
bative series expansion and Padé analysis �12,13�. Series
expansions for the contact process and related models have
been used not only to study the subcritical regime but also to
study the supercritical regime �4–8,14–16�. Perturbative and
time series expansions for the contact process have been
computed for several quantities but not for the gap.

The contact process �1–11� is one of the simplest nonequi-
librium interacting systems described by a continuous-time
Markov process, that is, governed by a master equation. In
the usual interpretation, the contact process describes an
interacting-particle system in which particles are annihilated
spontaneously and created catalytically on the sites of a regu-
lar lattice. The contact process in an infinite lattice exhibits a
continuous phase transition from an absorbing state devoid
of particles to an active state with a nonzero density of par-
ticles. Its critical behavior places the model in the directed
percolation universality class �17,18�.

In the contact process a particle is created on an empty
site with rate � times the fraction of nearest-neighbor occu-
pied sites. If the neighboring sites are all empty no particle is
created. A particle is annihilated with rate 1. If all particles
are annihilated the system becomes trapped in the absorbing
state devoid of particles. This will always happen in a finite
lattice if we wait long enough, no matter what the transition

rate is. This is so because the Perron-Frobenius theorem
guarantees that the dominant eigenvalue is nondegenerate as
long as the evolution operator is finite, which is the case of a
finite system. In other words, the gap is always nonzero.
However, in an infinite system the theorem no longer applies
and the dominant eigenvalue may become degenerate. This
indeed happens at a sufficiently high value of � where a
phase transition to an active state takes place. Above the
critical point the system will not fall into the absorbing state
and will remain in the active state.

We have developed a perturbative series expansion for the
contact process by treating the catalytic creation of particles
as a perturbation and the spontaneous annihilation of par-
ticles as the unperturbed evolution operator. An important
simplification contained in the present method is the use of a
vector representation, which we call the � representation,
defined by the eigenvectors of the unperturbed operator in
the place of the usual occupation representation. A long se-
ries for the gap of the evolution operator associated with the
one-dimensional contact process in powers of the creation
rate was then obtained with 49 coefficients. A biased Padé
analysis leads to the following results: for the critical cre-
ation rate �c=3.297 98�1� and for the time correlation critical
exponent �� =1.734 65�8�.

II. OCCUPATION REPRESENTATION

In the contact process particles are created catalytically in
the sites of a regular lattice with rate � and annihilated spon-
taneously with rate 1. In the usual occupation representation,
one defines an occupation variable �i that takes the value 0
or 1 according to whether the site i is empty or occupied by
a particle. A configuration is then denoted by �
= ��1 ,�2 , . . . ,�N� where N is the number of sites of the lat-
tice. The transition rate wi��� at which the site i changes its
state is given by

wi��� = wi
a��� + wi

c��� , �1�

where

wi
a��� = �i �2�

is the annihilation transition rate, and
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wi
c��� =

�

2
�1 − �i���i−1 + �i+1� �3�

is the creation transition rate. We are considering a one-
dimensional lattice.

The time evolution of the probability P�� , t� of a configu-
ration � at time t is governed by the master equation

d

dt
P��,t� = �

i

�wi��i�P��i,t� − wi���P��,t�� , �4�

where �i is that configuration obtained from � by changing
�i to 1−�i.

It is convenient to use the vector representation

	��t�
 = �
�

P��,t�	�
 , �5�

in which the vector

	�
 = 	�1,�2, . . . ,�N
 �6�

represents a state of the system. Is is straightforward to show
that the state vector 	��t�
 evolves in time according to

d

dt
	��t�
 = W	��t�
 , �7�

where W=W0+�V is the evolution operator and W0 and V
are the operators associated with the annihilation and cre-
ation processes, respectively. They are given by

W0 = �
i

Bi �8�

and

V = �
i

Qi�ni−1 + ni+1� . �9�

The local operators Bi, Qi, and the number operator ni are
defined by

Bi	 � 
 = 0, Bi	 � 
 = 	 � 
 − 	 � 
 , �10�

Qi	 � 
 =
1

2
�	 � 
 − 	 � 
�, Qi	 � 
 = 0, �11�

and

ni	 � 
 = 0, ni	 � 
 = 	 � 
 . �12�

The symbols “�” and “�” represent an empty site ��i=0�
and an occupied site ��i=1�, respectively.

III. � REPRESENTATION

Since W0 is a sum of independent operators Bi, its eigen-
vectors will be a direct product of the eigenvectors of Bi. The
right eigenvectors of Bi are 	� 
 and 	� 
− 	� 
, with eigen-
values 0 and −1, respectively. The corresponding left eigen-
vectors are ��	+ ��	 and ��	, respectively.

It is convenient to change from the occupation represen-
tation spanned by the vectors 	� 
 and 	� 
 to a representa-

tion spanned by the vectors 	0
 and 	1
, which we call the �
representation, defined by

	0
 = 	 � 
, 	1
 = 	 � 
 − 	 � 
 . �13�

The transformations of the left vectors are

�0	 = �� 	 + �� 	, �1	 = �� 	 . �14�

In this new representation Bi is diagonal, that is,

Bi	0
 = 0, Bi	1
 = − 	1
 . �15�

The eigenvectors of W0 are then

	�
 = 	�1,�2, . . . ,�N
 , �16�

where �i=0 or 1, with eigenvalues

���� = − �
i

�i. �17�

Next we need to known how the operator V acts on a
vector 	�
 of the � representation. We begin by rearranging
the terms in V in the form

V = �
i

�Qini+1 + niQi+1� . �18�

From the definition of Qi and ni and using the transformation
�13� it follows that

Qi	0
 =
1

2
	1
, Qi	1
 = −

1

2
	1
 , �19�

and that

ni	0
 = 0, ni	1
 = 	0
 + 	1
 . �20�

From these relations one gets the following important rules:

�Qini+1 + niQi+1�	00
 = 0, �21�

�Qini+1 + niQi+1�	01
 =
1

2
	10
 +

1

2
	11
 , �22�

�Qini+1 + niQi+1�	10
 =
1

2
	01
 +

1

2
	11
 , �23�

�Qini+1 + niQi+1�	11
 = −
1

2
	10
 −

1

2
	01
 − 	11
 . �24�

IV. PERTURBATION SERIES EXPANSION

The state devoid of particles 	O
 is the eigenvector of W
with zero eigenvalue, that is,

W	O
 = 0. �25�

It is also the eigenvector or W0 with zero eigenvalue

W0	O
 = 0. �26�

The subdominant eigenvector of W0, which we denote by
	�0
, has eigenvalue −1, that is,
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W0	�0
 = − 	�0
 . �27�

We are interested in determining the subdominant eigen-
vector of W, that is, the eigenvector 	�
 whose eigenvalue is
the closest to zero. Denoting by A this eigenvalue then

W	�
 = A	�
 . �28�

We define the gap � as the difference between the dominant
eigenvalue and the subdominant eigenvalue, that is, �=−A
since the dominant eigenvalue is 0. Next we assume that 	�

and A can be expanded in powers of �, that is,

	�
 = 	�0
 + �	�1
 + �2	�2
 + ¯ �29�

and

A = A0 + A1� + A2�2 + ¯ , �30�

where A0=−1. The coefficients of the expansion of the gap

� = c0 + c1� + c2�2 + ¯ �31�

are simply cn=−An. In addition, we choose the vectors 	�n

to be orthogonal to 	�0
, that is,

��0	�n
 = 0, n � 0. �32�

It is straightforward to show that this is always possible to
do.

Substituting �29� and �30� into �28� and collecting terms
of the same power in � we get the following relations:

W0	�0
 = A0	�0
 �33�

and

W0	�n
 + V	�n−1
 = �
m=0

n

Am	�n−m
 , �34�

valid for n	1. Taking into account that ��0 	W0=A0��0	, the
orthogonality relation �32�, and the normalization ��0 	�0

=1, it follows from Eq. �34� that

An = ��0	V	�n−1
 , �35�

valid for n	1.
Now we write the operator W0 as

W0 = �
�

�	�
������	 , �36�

where the summation is over the subspace orthogonal to the
vector 	O
, and define the operator R by

R = �
�

�	�

1

���� − A0
��	 , �37�

where the summation is over the eigenvectors � except those
corresponding to eigenvalues 0 and −1. Therefore,

R�W0 − A0� = �
�

�	�
��	 = 1 − 	O
�O	 − 	�0
��0	 . �38�

Writing �34� as

�W0 − A0�	�n
 = − V	�n−1
 + �
m=1

n

Am	�n−m
 �39�

and multiplying from the left by R, we get, for n=1,

	�1
 = − RV	�0
 �40�

and, for n	2,

	�n
 = − RV	�n−1
 + �
m=1

n−1

AmR	�n−m
 , �41�

where we used the fact that 	�m
, for m�0, is orthogonal to
	O
 and to 	�0
. We have used also that R 	�0
=0. We remark
that multiplying both the right- and left-hand sides by ��0	
and taking into account that ��0 	R=0 it follows that
��0 	�n
=0, as expected.

Equations �35�, �40�, and �41� allow us to determine An
and 	�n
 recursively starting from 	�0
= 	.1. 
. The first vec-
tors are

	�1
 = 	.11 . 
 , �42�

	�2
 = − 2	.11 . 
 + 	.101 . 
 +
1

2
	.111 . 
 , �43�

	�3
 =
11

2
	.11 . 
 −

7

2
	.101 . 
 −

5

4
	.111 . + 	.1001 . 


+
3

8
	.1101 . 
 +

3

8
	.1011 . 
 +

1

6
	.1111 . 
 . �44�

The two dots in the notation 	 .x . 
 mean that all sites at the
right and at the left of x are in the state 0.

Up to terms of order �5 the gap � is given by

� = 1 − � + �2 − 2�3 +
11

2
�4 −

69

4
�5. �45�

Other coefficients of the gap expansion up to 49th order are
listed in Table I. They were obtained by using quadruple
precision �REAL*16 in FORTRAN coding�. The calculations
were performed on a computer machine with a 64-bit re-
duced instruction set computer �RISC� processor of
667 MHz. The determination of the 49 coefficients shown in
Table I needed about 1 gigabyte of random access memory
and consumed 8 min of CPU time.

V. CRITICAL BEHAVIOR AND PADÉ APPROXIMANTS

At the critical point the gap has a singular behavior given
by

� � ��c − ���� , �46�

where �� is the exponent related to the time correlation length

, defined as the inverse of the gap, that is, 
=1/�. To obtain
the exponent �� as well as the critical parameter �c from the
coefficients of the series for � we have used an analysis by
Padé approximants �12,13� for the logarithm derivative of
the gap, which behaves as
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d

d�
ln � �

��

� − �c
. �47�

The critical exponent �� and the critical parameter �c are
identified as the residue and pole, respectively, of a given
Padé approximant of the logarithm derivative.

Table II shows the estimates of �c and the exponent ��

obtained from the coefficients of Table I by the use of Padé
approximants for the logarithmic derivative of the gap. The
determination of the deviations of the results given by the
Padé approximants from the true values represents a difficult
problem. We may look at the convergence of the results as
one increases the order of the Padé approximants. However,
the convergence may not be clear. Alternatively, we used a
biased analysis in which we form the series for the quantity
in the left-hand side of

�� − �c
*�

d

d�
ln � � �� �48�

for a trial value of �c
* and then determine the Padé approxi-

mants which are evaluated at �=�c
*.

For each trial value of �c
*, the biased Padé approximants

give estimates of the exponent ��. A plot of �� versus �c
* then

gives the actual values of these two quantities at the inter-
section of the curves coming from several Padé approxi-
mants. From Fig. 1 the following results are obtained: �c
=3.297 98�1� and �� =1.734 65�8�. These results should be
compared with the results �c=3.297 85�2�, obtained for the

TABLE I. Coefficients cn=−An of �n for the gap � between the
dominant and subdominant eigenvalues.

n cn

0 0.10000000000000000000000000000000�101

1 −0.10000000000000000000000000000000�101

2 0.10000000000000000000000000000000�101

3 −0.20000000000000000000000000000000�101

4 0.55000000000000000000000000000000�101

5 −0.17250000000000000000000000000000�102

6 0.58145833333333333333333333333333�102

7 −0.20510590277777777777777777777778�103

8 0.74666145833333333333333333333333�103

9 −0.27824315562307098765432098765432�104

10 0.10559185065224729938271604938272�105

11 −0.40663499522422089334705075445816�105

12 0.15850374353381124390932213077275�106

13 −0.62416873644121251663698726375553�106

14 0.24793994576864424804924054920036�107

15 −0.99233930054414026478039202932240�107

16 0.39978654898019013324234457383972�108

17 −0.16199801451968107022751997742955�109

18 0.65981369639291419050601201601903�109

19 −0.26997580096879531020601305076810�1010

20 0.11092209297248709929693796251047�1011

21 −0.45743350460118092150449102676524�1011

22 0.18928029884376209635971554568753�1012

23 −0.78563509376340460662879241091594�1012

24 0.32701013907692385731672303696029�1013

25 −0.13646680852412971308162844694013�1014

26 0.57086118938854129284225101308734�1014

27 −0.23932811976660851165137006830232�1015

28 0.10054192030943096670903950606937�1016

29 −0.42318341439092303787922371853344�1016

30 0.17843588063020210045178951401720�1017

31 −0.75362860155990246095601666265477�1017

32 0.31879281024944268725247836567465�1018

33 −0.13504986432216258095509813738375�1019

34 0.57289693646299782489328815094175�1019

35 −0.24334423341123914346226741790539�1020

36 0.10348948680444338916147654741416�1021

37 −0.44062893667556268780621415759995�1021

38 0.18781259265016825428034037111797�1022

39 −0.80135821495218346358410935162745�1022

40 0.34226005448402586074770570757498�1023

41 −0.14631612772304272471387311414664�1024

42 0.62605875064111692466722579274380�1024

43 −0.26810611002829694690537544522708�1025

44 0.11490796574366077070676746286450�1026

45 −0.49286681369242956973843558582605�1026

46 0.21155840492692774297831181794147�1027

47 −0.90873751841185413631021365534459�1027

TABLE I. �Continued.�

n cn

48 0.39060803456546541299848897891520�1028

49 −0.16800658077463921600253273431846�1029

TABLE II. Estimates for the critical point �c and the value of
the critical exponent �� obtained from the Padé approximants to the
logarithm derivative of the gap A.

Approximant �c ��

�10/10� 3.297880 1.735339

�11/11� 3.298395 1.736703

�12/12� 3.298410 1.736745

�13/13� 3.298413 1.736754

�14/14� 3.298412 1.736752

�15/15� 3.298428 1.736795

�16/16� 3.297941 1.734371

�17/17� 3.297942 1.734380

�18/18� 3.297921 1.734220

�19/19� 3.297976 1.734635

�20/20� 3.297985 1.734705

�21/21� 3.297986 1.734711

�22/22� 3.298006 1.734810

�23/23� 3.297988 1.734726
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one-dimensional contact process �7�, and �� =1.733 83�3�,
obtained for directed percolation in two dimensions �16�. Al-
though the values for �c and �� differ by less than 0.004%
and 0.04%, respectively, they are distinct if the statistical
errors are taken into account. We remark that, even if we take
into consideration the values obtained from the unbiased
Padé approximants shown in Table II, namely, �c
=3.297 96�4� and �� =1.7345�3�, the statistical errors will be
greater but not sufficient to make an agreement with the re-
sults quoted.

The estimate of errors coming from a Padé analysis is a
difficult task. One of the problems is that the convergence is
not smooth. The figures seem to be displayed like stages of a
staircase as can be seen in Table II. One observes clearly a
stage from �11/11� to �15/15� and another from �16/16� to
�23/23�. Conventionally, the error is defined as the statistical
error contained in the figures of the last stage. Since the
figures within a stage have a small dispersion, the statistical
error will be small. However, there is no guarantee that an-
other stage will not follow the last stage if we had more
terms in the series expansion. Therefore, the error of a quan-
tity determined by a Padé analysis may not coincide with the
true error, defined as the deviation between the estimate of a
quantity and its exact value. If the estimated error is not the
true error, the Padé results coming from distinct series might
not be comparable. As a result, a more realistic numerical
estimate of a given quantity would be the average of esti-
mates coming from distinct series.

VI. CONCLUSION

We have developed a perturbative series expansion for the
contact process in which the operators associated with the
spontaneous annihilation and the catalytic creation were
treated as the unperturbed operator and the perturbation, re-
spectively. A representation defined by the eigenvectors of
the unperturbed operator was used in place of the usual oc-
cupation representation. We have computed 49 coefficients
of the powers of the creation rate for the gap of the evolution
operator associated with the contact process in one dimen-
sion. An analysis by Padé approximants allowed the determi-
nation of the critical creation rate and the time correlation
exponent.
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